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ABSTRACT 
 

A query processor (query compilation and execution) is an essential component in any database management system 

(DBMS). Specifically, query compilation transforms user queries into a sequence of database operations, while 

query execution executes those given operations. Retrieve Information from the OLAP Storage is very important 

task, but because of large amount of OLAP data it’s taking tremendous time for the execution of the query. In this 

paper, we shall cover algorithm for the SELECTION operator (OLAP Algebraic Operator), which is used to access 

the data of the OLAP storage. 
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I. INTRODUCTION 

 

In this paper, we look at the algorithms that are used to 

access the data of the OLAP storage. Moreover, we shall 

cover the algorithms applied in the execution of our 

OLAP algebraic operator (SELECTION) against the 

indexed cube (stored in the Berkeley DB) and associated 

dimension tables. Berkeley databases are used in our 

server to store the indexed cube in one physical file. We 

assume that we have enough memory to hold the result 

of any OLAP operator and any extra data structure. Note 

that extensions to external memory are expected in the 

future. Finally, for each physical operator in the OLAP 

physical query plan, we determine the appropriate 

algorithm(s) that can be used to answer them (e.g., 

algorithm x implements the physical operator 

BerkeleyRtreeAccess()). 

 

The result of query compilation is an OLAP physical 

query plan explained in below figure, which defines an 

efficient execution plan for the received OLAP query. 

We order the execution of all nodes of the physical plan 

tree in a bottom-up, left-to-right manner. In other words, 

we order the nodes of the tree in such that a pre-order 

traversal traverses the entire physical query tree. Our 

OLAP query optimizer can generate a sequence of 

function calls - one for each physical operation in the 

physical plan - and pass them to the OLAP query engine 

for execution. 

 

 
In addition, the server must also select an algorithm for 

each OLAP operator in the OLAP logical plan in order 

to turn the preferred logical plan into a physical plan. 

We note that the algorithm for each OLAP operator (e.g., 

SELECTION) depends on the functionality developed. 
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In this paper, we discuss the SELECTION of algorithms 

for OLAP operators defined in our OLAP algebra. 

 

 

II. METHODS AND MATERIAL 

 

A. Hoosing A Selection Method  

 

The selection is the driving operation behind most 

analytical queries. Therefore, one of the important steps 

in choosing a physical plan is to select an 

implementation for each selection operator. As was 

illustrated, SELECTION in the preferred logical OLAP 

query plan is of the form: SELECTION(Dim.DimID = x 

AND Dim1.Dim1ID = y OR Dim2.Dim2ID ...)C. 

SELECTION is defined as a listing of dimensions related 

via AND and OR, where each dimension is associated 

with a condition. For simplicity, we consider the 

SELECTION with only one dimension (i.e., Dim) like 

SELECTION(Dim.DimID = x), such that x is a set of 

DimIDs that satisfy the user’s query condition (UC) 

associated with one dimension called Dim (Note that 

DimID is the most detailed level of dimension Dim). The 

user’s query condition associated with dimension Dim is 

of the form “Dim (A OP c)”, where A can be a 

hierarchical or non-hierarchical attribute of dimension 

Dim, OP can be any comparison operator defined by our 

OLAP query grammar (e.g., <, >, =, IN LIST), and c is a 

constant or set of constants. UC is a compound condition 

of one or more simple conditions against dimension Dim 

(connected via logical operators AND and OR). We 

would like to eliminate the inner/natural joins between 

the cube and dimension tables that would ordinarily be 

required to exclude cube rows that do not satisfy the 

query restriction. The implementation of SELECTION is 

divided into the following three steps. 

 

First, we need to find all dimension members (DimIDs) 

satisfying the query restriction called UC (defined by the 

user). For simplicity, we consider the query condition 

UC =Dim (A OP c). 

 

1. If A is a hierarchical attribute level in dimension 

Dim, then we retrieve all DimIDs (most detailed 

integer values) that satisfy the comparison 

UC( AOP C), using the enhanced hierarchy manager 

(mapGraph).  

2. If A is a non-hierarchical attribute level, then we 

retrieve all DimIDs that satisfy UC, using the 

FastBit compressed bitmap index created for each 

non-hierarchical attribute level in the dimension. 

 

If UC is the AND/OR of simple conditions, then we use 

mapGraph and/or FastBit bitmap indexes to identify the 

set of DimIDs that satisfy UC. Using the mapGraph and 

the bitmap indexes ensure that the resulting DimIDs that 

satisfy the query condition (UC) associated with 

dimension Dim are sorted. This result is organized as an 

ordered set of contiguous ranges that is stored in a main-

memory sorted array. Given a DimID value v, we can 

directly apply a binary search within the sorted array to 

verify the existence of that given value. We can use 

similar techniques to find and store the dimension IDs for 

other user’s dimension conditions mentioned in the 

SELECTION operator. An example of this will be 

provided shortly. 

 

Second, the SELECTION at this step has the most 

detailed dimension values that satisfy the user’s 

conditions on those given dimensions (e.g., 

SELECTION(Dim.DimID = x AND Dim1.Dim1ID = y 

OR ...) V, such that x and y are all DimIDs and Dim1IDs 

that satisfy the user’s conditions on dimensions Dim and 

Dim1 respectively). We access the Berkeley database 

Hilbert R-tree index of view V, and use the Linear 

Breadth First (LBF) Search algorithm to efficiently 

answer the SELECTION operator. We stress that the 

initial LBF pre-dates the work in this research and 

answers very simple range queries. However we will 

soon see how the initial Sidera LBF is enhanced to 

answer complex range queries. 

 

Finally, if no indexes are available for dimension tables 

and views, then we can answer the SELECTION 

operation by sequentially scanning dimension tables and 

views to find those rows that match the condition.  

 

B. Physical Operators For Selection  

We explained how the SELECTION operation is 

resolved. Specifically, we first use the hierarchy manager 

and the bitmap index manager to convert the user’s 

condition to a condition that is in turn answered by 

accessing the appropriate R-tree index view/cuboid. 

Consider SELECTION(D(Cond)) C. Cond is a user’s 

condition of the form A OP c, where A is an attribute of 
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dimension D, OP is a comparison operator (IN LIST, >, 

<, etc), and c is a constant or list of constants. C is the 

index cuboid/view that returns cells satisfying the user’s 

condition Cond. We simply replace 

SELECTION(D(Cond)) C, by the following physical 

operators: 

 

 If (A is a non-hierarchical attribute of dimension D) 

THEN F = bitMapAccess(D, A OP c) ELSE F = 

mapGraph(D, A OP c) 

 

BerkeleyRtreeAccess (C, F). Here F is a set of dimension 

IDs satisfying the user’s condition on dimension D, C is 

the Hilbert R-tree index cuboid needed to answer the 

query. 

 

C. In-Memory Hash Table Representation 

As was discussed in the previous section, some of our 

OLAP physical operators require an in-memory hash 

table data structure for efficient searching and inserting. 

In practice, the entry of a hash table is of the form (k,v), 

where k represents the search key of the hash table and v 

its associated value [56]. In our case, the value of the 

search key k is the value(s) of the feature attributes that 

will be in the result of a given OLAP operator, while v is 

the value of the measure attributes. In general, a hash 

table consists of an array of size N, and a hash function h 

that maps values of a given type (string, array of integers, 

etc.) to integers between [0, N-1]. 

 

In our case, for each physical operator that needs an 

internal hash table to be executed, we create a hash table 

(hT) of size N, where N is equivalent to the cardinality 

product of the result of the OLAP operator, and a hash 

function h that maps the values for one or more feature 

attributes to a specific integer between 0 and N-1.  

Algorithm-1 shows an implementation of our hash 

function. The input of the algorithm consists of a list of 

feature attributes fA, an array of cardinality products 

(aCP) and an array (aV) that possesses the values of the 

feature attributes to be mapped to an integer between [0, 

N-1]. Let the list of feature attributes be of the form fA = 

{f1 , f2 , . . ., fi , . . ., fn }, where n is the number of 

feature attributes in the result of a given OLAP physical 

operator. We can thus say that aCP can be written as {CP 

f1, CP f2 , . . ., CP fn }, where the value of CP fi 

represents the cardinality product of all subsequent 

feature attributes {fi+1 , fi+2 , . . ., fn }. Note that CP fn 

equals 1. aV has n values {aV1 , aV2 , . . . , aVn }, one 

value for each feature attribute fi in fA. It is crucial for 

one to maintain the exact sequential order of the 

numerical values in aV as they each represent a specific 

feature attribute. Algorithm returns the hash key for the 

values of the feature attributes (aV). Our hash function 

ensures O(1) processor running time for searching, 

inserting and deleting entries from the hash table. 

Moreover, the example below will illustrate how our 

hash function ensures that the entries of the hash table 

are sorted according to the list of attributes in fA.  

 

Algorithm-1: Hash Function Algorithm  

Input: List of Feature attributes fA{d1.d1ID, 

d2.d2ID, . . .,dn.dnID} where n is the number 

of feature attributes of the result, a list of 

cardinality products aCP{CP1(d2.d2ID, 

d3.d3ID, . . ., dn.dnID), CP2(d3.d3ID, 

d4.d4ID, . . ., dn.dnID), . . ., CPn(1)}, and the 

values of the feature attributes is v(d1ID, 

d2ID, . . ., dnID) 

Output: An integer x between 0 and N-1, where N is 

the cardinality product for attributes in fA. 

1 Initialize x to 0 

2 for each feature attribute in array fA stored at 

index i do 

3 x = x + (v[i]-1) * CP[i] 

4 end for 

5 return x 

 

Let us assume that we need to find the hash value of the 

following set of feature attributes (CustomerID, StoreID, 

ProductID) (3, 10, 5). The input of Algorithm is: 

 

 fA = {Customer.CustomerID, Store.StoreID, 

Product.ProductID}  

 Array aCP of cardinality products. aCP = {600, 50, 

1}, 600 is the cardinality product of (StoreID, 

ProductID), while 50 is the cardinality product of 

ProductID.  

 Array aV is the values of the feature attributes in fA, 

aV= {3, 10, 5}. In this case, 3 is the value of 

CustomerID, 10 is the value of StoreID and finally 5 

is the value of ProductID. 

 

Using the hash function outlined in Algorithm, the hash 

value of key (3,10,5) is: (3-1) * 600 + (10-1) *50 + 5-1 = 

1200 + 450 + 4 = 1654 < 3000. This means that 

key(3,10,5) is stored in the array hA at the index of 1654. 
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D. Index Based Selection Algorithm 

 
Algorithm-2 is an algorithm applied to answer the 

SELECTION operator efficiently. Before we access the 

indexed cuboid/group-by to return the cube cells that 

satisfy the query restriction, we transform the user’s 

query constraints that are specified on the attributes of 

the dimensions into the most detail-oriented level. 

Algorithm utilizes a function called 

transformSELECTION() to convert the user’s query 

restriction into a most detail-oriented value that can be 

utilized by our OLAP query engine. After this process, 

we open the Berkeley DB database object that represents 

the appropriate Hilbert R-tree index for the group-by 

(e.g., called V) to answer the selection operator. Finally, 

a processSelection() is applied which uses the Hilbert R-

tree index for view V to answer the transformed user’s 

condition and return the result.  

 

Algorithm-2: SELECTION Algorithm 

Input: A user-defined OLAP selection condition dC, 

a hierarchy manager (mapGraph) containing 

the hierarchical attributes data, a cube C, an 

appropriate view V to answer the 

SELECTION operator, and a bitmap index 

manger biM that contains the bitmap indexes 

for the needed non-hierarchical attributes. 

Output: Fully resolved SELECTION (I with all 

detailed level values satisfying dC). 

1 create a new array OP of size n, where n is the 

number of logical operators (AND and OR) 

that are used to form compound conditions, 

each associated with a dimension. 

2 Use dC to get those logical operators and 

store them in OP. 

3 Invoke transformSELECTION(dC,mapGraph, 

biM) 

4 Open the Berkeley database object called db 

that contains the Hilbert R-tree index for 

group-by V . 

db.open(NULL, C, V , DB-RTREE, DB 

RDONLY, 644); 

5 get result I from disk, I = 

processSelection(dC, db, OP) 

 

The primary focus of Algorithm is to replace the user’s 

query restrictions that are specified within the 

SELECTION operator into other restrictions (dC) that 

can be solved against the indexed data stored in the 

physical cube. As was illustrated, a SELECTION(Dim.A 

OP c) View is translated into a 

SELECTION(Dim.DimID = x)View where x is a set of 

DimIDs satisfying the condition (Dim.A op c). 

 

Algorithm-3: SELECTION Transformation Algorithm 

Input: A user-defined OLAP selection condition dC, 

a hierarchy manager mapGraph, OP array of 

logical operator, and a bitmap index manager 

biM. 

Output: The user’s condition in the most detail-

oriented form (primary key form). 

1 for each dimension condition Ci in dC do 

2 for each expression ej in Ci do 

3 if attribute (A) involved in ej is a hierarchical 

attribute level then 

4 arrayj = mapGraph.getBaseID(A, ej) 

5 Else 

6 arrayj = biM.getBaseID(A, ej) 

7 end if 

8 if Logical operator between ej and ej−1 

equals AND then 

9 arrayj = setIntersection(arrayj , arrayj−1) 

10 Else 

11 arrayj = setUnion(arrayj , arrayj−1) 

12 end if 

13 end for 

14 create a new range array newR of size |arrayj 

| 

15 store integer values in arrayj as a sorted set of 

contiguous ranges 

16 Remove the current SELECTION condition 

Ci and replace it with Di.DiID =newR such 

that newR has all IDs that satisfy condition Ci 

associated with Di. 

17 end for 

 

III. RESULTS AND DISCUSSION 
 

Cost of the Selection Operation 

 
We must be able to estimate the cost of each OLAP 

physical operator that we use in the physical OLAP 

query plan. It is well-understood that it is slower to 

retrieve data from a disk than do anything with the data 

once it is in the main memory. Therefore, we use the 

number of disk I/O to estimate the cost of an OLAP 
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operation. However, we shall also mention the processor 

running time when the amount of process time is 

proportional to a specific variable (i.e., n2 ). 

 

The input argument for the SELECTION operator is a 

Hilbert packed R-tree indexed group-by stored as a 

Berkeley DB database object on disk. Also, the 

SELECTION requires the data of non-hierarchical and 

hierarchical attributes in order to convert the user’s query 

restriction to the most detail-oriented level form 

restriction. At run-time, the enhanced mapGraph 

hierarchy manager is used to represent the data of 

hierarchical attributes. In addition, we create another in-

memory index manager called the Bitmap Index 

Manager to represent the data of each required non-

hierarchical attribute in the SELECTION operator. We 

also assume that we have enough memory to store those 

two managers (mapGraph and indexManager). 

 

The result of the SELECTION is left in memory unless it 

is required to be returned to the disk. It is important to 

mention that the sorted arrays that are used to store the 

set of contiguous ranges are left in memory as well, until 

the SELECTION operation terminates. Recall that the 

sorted arrays represent the query restriction in the most 

detailed level form. 

 

Theorem-1: The cost of the SELECTION operator is 

bounded as the cost of sequentially scanning B(V) and 

D(V), where V is the appropriate packed R-tree index to 

answer the SELECTION, B(V) is the number of index 

blocks, and D(V) is the number of disk blocks. Cost = 

B(V) + D(V) I/O. 

 

Proof: SELECTION uses the Linear BFS strategy to 

retrieve records that satisfy its condition. LBFS uses a 

top-to-bottom/left-to-right search pattern for the packed 

R-tree indexed cube. The indexed cube is stored 

physically on disk per consecutive disk IDs, using the 

same top-to-bottom/left-to-right fashion. Also, the data 

blocks follow this ordering. The worst case is to scan 

sequentially all index blocks and data blocks. Number of 

Disk I/O is B(V) + D(V) blocks. 

 

We note, however, there is also a large amount of 

processor time that may aff ect our assumption that only 

the disk I/O time is significant. If the condition of the 

SELECTION has k distinct feature attributes, then k 

sorted arrays are used to store IDs that satisfy the user’s 

condition, where the larger sorted array has n IDs. We 

also assume that D(V) has m records (cells). 

 

Theorem-2: The worst case processor running time of 

the SELECTION operator has a bound of O(m * log(n)). 

 

Proof: In the worst case, we scan sequentially all index 

blocks and data blocks of view V. For each index block b, 

we perform a binary search to check if it intersects the 

selection condition that is stored as a set of sorted arrays. 

The worst case processor running time for the index scan 

is k * log(n) * B(V). Also, in the worst case, for each 

record (cell) of V we have to perform a binary search to 

check if it intersects the selection condition. The worst 

case running time for the data scan is k * log(n) * m. 

Finally, the worst case processor running time is k * 

log(n) * B(V) + k * log(n) * m which can be written as k 

* log(n) * (B(v) + m). This result can be re-written as k * 

log(n) * (O(m)) because m, number of records, 

dominates the number of index blocks. Finally, since k 

represents a small number of feature attributes, the worst 

case running time can be bounded as O(m * log(n)) in 

practice. 

 

The cost of the SELECTION algorithm can be 

determined by the sums of (a) the disk I/O and (b) the 

processor running time, as follows: 

 

1. The worst case number of disk I/O is B(V) + D(V) 

disk I/O. 

2. The worst case processor running time is O(m * 

log(n)). 

 

In practice, we observe that for most queries the number 

of disk I/O dominates the processor running time. The 

processor time still has some effect on the total execution 

time. 

 

IV. CONCLUSION 

 
In this paper, we have presented number of algorithms 

for execution of the operations of our OLAP algebra. 

These algorithms build upon the efficient OLAP Sidera 

data storage and data structures. Moreover, the query 

engine uses an in-memory hash table structure that 

allows efficient implementation of these algorithms. In 

the next chapter, we will discuss various experimental 
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results that support the design decisions that we have 

made. 

 

In summary, our OLAP query processor complements 

the efficient OLAP storage engine and the OLAP query 

grammar and algebra by providing the final piece that 

the Sidera DBMS requires in order to support high 

performance OLAP DBMS within the ROLAP 

environment. 
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